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ABSTRACT
A necessary and sufficient condition for crack branching based on a
crack branching stress intensity factor, K, , accompanied by a minimum

characteristic distance of r_ is proposed. This crack branching criterion

is evaluated by dynamic phot8elastic experiments involving crack branching

of six single-edged notch specimens and six wedge-loaded rectangular double

cantilever beam specimens. Consistent crack branching at K b= 2.04 MPa/m
and r_ = 1.3 mm verified this crack branching criterion. T*e crack
brancﬁing angle predicted by this crack branching criterion agreed well
. with those measured in the crack branching experiments.
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INTRODUCTION

Literature on crack branching criteria can be grouped into two cate-
gories of dynamic crack tip stress field distortion [1,2,3]* aﬁd initiation
of the secondary cracks [4-7]. While the former relates only to the singu-
lar stress field at the crack tip, the latter incorporates the nonsingular
stress components. Studies on the crack tip stress field can also be divi-
ded into pre- and post-branching analyses. Pre-branching analysis normally
leads to a branching criterion, while direction of the branched crack and
its propagation are studied in post-branching analysis. An excellent
review of such crack branching analysis can be found in Reference [7].

Crack branching has been frequently observed during the ten plus years
of dynamic fracture research at the University of Washington [8] and at the
University of Maryland [9]. Earlier attempts to evaluate these crack
branching results were hampered by the lack of adequate data reduction pro-
cedure as well as by the paucity of theoretical understanding on elasto-
dynamic crack propagation. Much of these obstacles have removed today and
thus, it appears apropos to re-evaluate these photoelastic data on crack
branching in view of the available new data reduction procedure [10]. This
data analysis will be preceded by a brief review of existing crack
branching criteria, after which a new crack branching criterion will be

presented.

*Numbers in bracket refer to references at the end of this paper.




BRIEF REVIEW OF CRACK BRANCHING CRITERIA

The most popularly held cause of dynamic crack branching is the pre-
branching distortion of the crack tip stress field at a critical crack
velocity. Yoffe's theoretical analysis [1] of a constant velocity crack
showed that at a crack velocity of about c/c1 = 0.33*, the maximum circum-

ferential stress, o,.**, shifted away from its original location of 9= 0

00
at a lower crack velocity. This crack branching criterion based on dynamic
crack kinking was followed by that of Craggs [11], who derived a critical
crack velocity of c/c1 = 0.40 for a propagating semi-infinite crack. Un-
fortunately, experimentally measured crack velocities never attained the
high velocity predicted by this critical crack velocity criterion. Although
D311 measured a branching crack velocity of c/cy = 0.28 and 0.3 in glass,
[12], but the crack branching velocities in steels reported by Irwin [6],
Hahn et al. [13], Congleton et al. [5], and in photoelastic polymers
reported by A. S. Kobayashi et al. [8), and by T. Kobayashi and Dally [14]
were less than c/c1 = 0.25. Also, the precise ultrasonic ripple marking
techniques used to mark instantaneous crack front by Kerkhoff [15] showed
only a ten percent decrease in crack speed in glass immediately after
branching, while Schardin [16] observed no change in crack velocity in
plate glass. Acloque [17] observed only a six percent decrease in crack
velocities immediately after branching in prestressed glass. Thus, the
experimentally observed lower branching velocities, which hardly decreased
after crack branching, showed that the postulated critical crack velocity

could not be a prerequisite to crack branching in these materials.

*c and c, are crack velocity and dilatational stress wave velocity,
respect*ve]y.
**In terms of polar coordinate (r,0) with origin at the crack tip.




Since crack branching is also observed at extremely low crack velo-
city, such as that in stress corrosion cracking, other crack tip parame-
ters such as the stress intensity factor, which could trigger branching of
a crack propagating at any _-rack velocity must be sought. For example,
attempts have been made to determine experimentally a critical crack
branching stress intensity factor, K;,. Kobayashi et al. [8] showed that
crack branching occurred in Homalite-100 single edge notch (SEN) specimens
when KI reached a maximum value of 3.6 times its fracture toughness, K;..
Dally et al. [9,14] obtained a Kip = 3-8 Ky from SEN, double cantilever
beam (DCB) and compact specimens when the cracks are propagating at termi-
nal velocity in Homalitel0O.

A crack kinking criterion, which is based on the development of sec-
ondary cracks in a region off-axis to the primary crack, is also an éttrac-
tive alternate since the crack kinking angle is governed by the dynamic
crack tip state of stress. Historically, Clark and Irwin [18] concluded
that branching occurs by advanced off-axis cracking under critical stress
intensity factor, KIb at a 1imiting crack velocity which was smaller than
those of Yoffe and Craggs. These advanced cracks created crack surface of
increasing roughness which were associated with increasing stress and vel-

ocity and which usually terminated after crack branching.

CRACK BRANCHING ANGLE

A characteristic feature of a branched crack is the crack branching
angle and many attempts have been made to predict this crack branching.
Sih [19] used the pre-branching minimum strain energy density to predict a
branching angle of 15-18 degrees which varies with Pofsson's ratio. Kita-

gawa [20] and Kalthoff [21] used the static post branching state of stress




of a symmetrically branched edged cracks and postulated that the small
initial wedge angle between two branched crack was governed by a vanishing
mode II stress intensity factor, i.e., KII = 0. Kitagawa et al. predicted
a branching angle of 30-40 degrees while Kalthoff's predicted Branching
angle of 28 degrees agreed with his measured angle in fracturing glass.

The branching angles measured by Christie [22] in an SEN specimen
impacted by stress waves was about 25 degrees, while Congleton [5] observed
branching angles of about 30-40 degrees in center and edge-notched steel
plates and 70-80 degrees in bursting steel tubes. It will be shown later
that this variation in measured crack branching angles can be attributed to
the influence of a non-singular stress terms which govern the direction of

crack branching in various fracture specimen geometry.

CRACK BRANCHING CRITERION

As described above, experimental evidences indicate that dynamic crack
branching at a terminal crack velocity is accompanied by a critical dynamic
stress intensity factor and that the crack branching angles associated with
each specimen configuration are very similar. A plausible crack branching
criterion would be to postulate that the crack branching stress intensity
factor, KIb' as a necessary condition accompanied by a sufficient condition
for crack kinking which governs the crack branching angle. The former nec-
essary condition is supported by the crack branching data which shows that
KIb is about four times its fracture toughness in Homal ite-100.

As for the latter sufficient condition, either of the two dynamic
crack curving criteria [23] advanced by the authors can be used to estimate
the crack branching angle. These dynamic crack kinking criteria are de-

rived from the near field, mixed mode elasto-dynamic state of stress
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associated with a crack tip propagating at constént velocity. The dynamic

state of crack tip stress field is given by Freund [24] in terms of local
rectangular and polar coordinates of (x,y) and (r,8), respectively, and the
mode I and II dynamic stress intensity factors, KI and KII*' reépectively.
The second order term of Oox* which is acting parallel to the direction of
crack extension, is also included in the above crack tip state of stress so
that crack kinking can be triggered at crack velocities lower than those of
Yoffe [1] and Craggs [11]. The two crack kinking criteria based on this
dynamic crack tip stress are the maximum circumferential stress and the
minimum strain energy density criteria, both of which will predict nearly H
identical crack kinking angles in the crack velocity range of c/c; < 0.2.
Thus for brevity, only the crack kinking criterion based on the maximum
circumferential stress criterion will be discussed in this paper.

The angle, Oc, at which circumferential stress, Jgg, is maximum, when

evaluated in conjunction with a pure mode I dynamic crack tip state of

stress will yield a transcendental relation between the critical values of ©

and r as
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*The superscript “dyn* to identify dynamic stress intensity factor will not
be used in this paper, since all quangities refer to dynamic values.
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The critical radial distance was postulated to be a unique material

property which was found to be r_. = 1.3 mm for Homalite-100 in Reference

c
{23]. Furthermore, by setting © = 0 we obtain a chracteristic distance of
1 | & 12
t‘o = m -;;-xb VéC,CI,CZ)J (2a)
where

Vsc.cl.cz) = Bl(c){-(l+sg)(2-35§)
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and the curving angle B s for a stationary crack from Equation (la) reduces
to

Y -
1024w DX\ 2
! 1+ 1 ’O(EK{) (3)
Gc = COS 7
512w r Oox
i 9 o 'K? ]

and c, ¢ and ¢, are the crack velocity, dilatational and distortional wave
velocities, respectively. It can be easily shown that for zero crack velo-

city or ¢ = 0, Equation (2) reduces to Streit and Finnie's [25] character-

K, 12
istic radial distance of o =T?%7F [ 3%;} for crack kinking of an initial-

ly stationary crack. This crack kinking criterion can also be used to es-
timate the crack branching angle for quasi-static crack branching under
stress corrosion cracking conditions, provided a static counterpart of the
necessary crack branching stress intensity factor can be established. The
dynamic characteristic distance o is always less than the corresponding
static r, for crack velocities of 0 <c/cy<0.33 and is insensitive to the
sign of Oox*

The crack kinking criterion thus states that the crack will kink at an

angle of 6. when a r, associated with the propagating crack tip reaches a

0
critical material property of re® When applied to crack branching, this

crack kinking angle is one half of the included crack branching angle since
the high crack branching stress intensity will result in sufficient energy

release rate to create two kinked cracks simultaneously.

A,




To recapitulate, then, crack branching will occur when the dynamic
stress intensity factor reaches KIb and the crack will branch at an angle
of ec’ In the following, this crack branching criterion will be tested by
re-evaluating previous dynamic experiments in which crack branching was ob-
served. Results of eleven dynamic photoelastic results involving SEN and
wedge-loaded rectangular DCB (WL-RDCB) fracture specimens are reported in

the following.
CRACK BRANCHING IN HOMALITE-100 FRACTURE SPECIMENS

1. Homalite-100 SEN Specimens

The SEN specimens considered are of 3.2 mm and 9.5 mm thick Homalite-
100 plates with 254 x 254 mm test section loaded in fixed grip configura-
tion. The prescribed boundary conditions included both uniform and line-
arly decreasing displacements along the fixed gripped edges of the speci-
men. At fracture load, the crack propagated from the SEN starter crack
which was saw cut and chiseled. Further details of the test setup and the
test conditions can be found in Reference [26]. Figure 1 shows three
frames out of a 16-frame dynamic photoelastic record of a crack propagating
and branching in a 3.2 mm thick, 254 x 254 mm Homalite-100 plate loaded
under fixed grip linearly varying tension.

Figure 2 shows the dynamic KI and KII variations obtained from the dy-
namic photoelastic patterns preceding and after crack branching of Figure
1. By extrapolating the dynamic KI associated with two branch cracks, an
after-branching dynamic stress intensity factor, KI = 1.2 MPa/m and KII =
0.45 MPa/m are obtained. The branching stress intensity factor, i.e.
immediately prior to branching is estimated to be K;, = 2.03 MPa/m. Also

8
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shown in Figure 2 are the variations in the o values as computed from
Equation (2). Note that o reached a minimum value of re = 1.2 mm at crack
branching.

Figure 3 shows another set of KI' KII and o for two branch cracks in
a similar dynamic photoelastic experiment. By extrapolating the KI asso-
ciated with the two branch cracks, an after-branching K; = 1.2 MPavm and
KII = -0.1 MPa/m are obtained. Immediately prior to branching, the in-
stantaneous dynamic stress intensity factor reached its maximum value of
2.0 MPa/m and is consistent with the previous results. The estimated
minimum ro at crack branching was re = 1.3 mm. Evaluations of four other
SEN tests yielded the branching stress intensity factors of KI = 2,00 and
2.09 MPa/M, as shown in Table 1. The r, values ranged from 1.2 to 1.4 mm.

The crack velocities in the above six tests were essentially constant
at about 15 + 5 percent of the dilitational wave velocity, ¢y = 2400 mps.
Nevertheless, the crack velocity prior to and after crack branching was
very close to the maximum velocity observed in all dynamic fracture tests
involving Homalite-100. This so-called terminal velocity varied from test
to test in a range of 0.15 to 0.20 c where the crack always accelerated
slightly just prior to crack branching.

The variations in the characteristic distance, ro? which was computed
from the Equation (2), for the branching cracks in the six tests all
reached a minimum value prior to and at crack branching. This minimum
value, which was obtained by interpolation at crack branching, was an
average of 1.3 mm and is consistent with the previously measured e values
for crack curving [23], and is further evidence that e is a material pro-
perty. Since minimum "o or r. is derived through °ox’ this r. value

c
indicates that o , has a significant effect on crack branching.

9




Table 1 also shows the measured and calculated crack branching angles
in the six tests. The crack branching angles, which were computed by Equa-
tion (1), for a known s KI and Opx are within 10 percent of the measured
values, thus validating the use of this crack kinking criterion.

As an interesting sideline, Figure 4 shows the enlarged view of Test
No. B5 where an isochromatic pattern of a pure mode Il crack tip deforma-
tion, i.e. nearly pure shear state of stress, is generated around branched
cracks. The mode II stress intensity factor KII and remote stress % ox
associated with these isochromatics are listed in Table 2. Figure 5 shows
that within the 49 micro-second interval, the propagating crack turned
about 81 degrees and arrested. The mixed mode stress intensity factors
prior to this severe crack kinking were K; = 0, K;; = 0.41 MPa/m and 0 =
0.18 MPa, and predicted a theoretical kinking angle of 84°whichagreed well
with experimentally measured angle. After crack kinking, the crack arrest-
ed and K; = 0.34 MPavm, K;; = 0.08 MPa/m and o, = 1.4 MPa. These results
show that the crack kinking can also occur under the high KII state of

stress.

2. Homalite-100 WL-RDCB Specimen

As mentioned previously, the proposed crack branching criterion should
be applicable to quasi-static crack branching where inertia effects in the
pre-branched crack are negligible or nonexistent. Experimental data of the
former were found in Homalite-100 WL-RDCB specimens where the crack immedi-
ately branched after initiating at a blunt starter crack tip. The neces-

sary condition for branching is satisfied by the high KIQ* due to the blunt

* K;n 15 the crack initiation stress intensity factor which is larger than
the Fgacture toughness, KIC'

10
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crack tip. The crack branching angle, as shown by Equation (3) is a func-
tion of °ox/KIQ and is thus a function of the specimen geometry.

The WL-RDCB fractured specimens considered is 76 x 152 x 9.5 mm thick
of the geometry shown in Figure 6. The crack inmediately brancﬁed and
propagated from a single, edge-notched starter crack of length of 24.3 mm
to 29.30 mm with a crack tip blunted by drilled hole of diameter of 2.2 mm
to 5.0 mm. The branched crack paths of six fractured specimens are also
shown in Figure 6.

In all six tests of the WL-RDCB specimens, the crack branched at ini-
tiation forming two or three branches. Table 3 summarizes the experimental
test specimen information along with the measured branching angle in six
WL-RDCB specimens. The angles of deviation of the po.t branched cracks
were measured along the crack path by averaging the measured crack curving
angle on front and back surfaces of the fractured specimen. Included an-
gles for all major branches averaged 53.4 degrees, and is twice the branch-
ing angle in a SEN specimen. This averaged branch angle agrees with the
experimental results of Nakasa and Takei [26] where bending of the SEN

specimens due to cantilever loading resulted in a positive which in

%x
turn caused larger branching angles.

Although reliablie data on the crack initiation condition was lacking
for this series of experiments, the crack branching angle can be estimated
from standard finite element analysis. Equation (3) shows ec involves only
the ratio of crox/KIQ and the predetermined res and thus the exact applied
loading condition need not be known for estimating the branch angle of an
initially stationary crack. In other words, the crack branching angle in

this WL-RDCB specimen is governed by the specimen geometry only provided

sufficient driving force is provided to branch the crack upon initiation.

11
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However, for a running crack, the dynamic crack branching angle, 8., in-
volves not only °bx/KI’ o but also the crack velocity as given in Equation
(1). With a unit vertical wedge loading displacement applied to the
specimen, KI and Oox Were calculated by least square fitting the following
4 plane stress crack tip displacement field of three to four sets of nodal

displacements on the crack surface.

u s 2 i) (4a)
a1k F, 2 "
SR i ) (40)

G and v in Equation (4) are shear modulus and Poisson's ratio, respective-
ly. An average KIQ/oox = 0.223 (/m) was obtained from the finite element
analysis using Equation (4) and a half branch angle of 6, = 26° was
obtained using Equation (3). This value is in good agreement with the
averaged branch angle of 54 degrees shown in Table 3. Figure 7 shows two
frames out of 16-frame dynamic photoelastic record of a branched cracks in
a WL-RDCB specimen of 9.5 mm thick, Homalite-100 plate. Experimental
details of this series of tests can be found in Reference [28]. Figure 8
shows the dynamic fracture parameters K;, and %ox obtained from the dynamic
photoelastic pattern of the three branched cracks shown in Figure 7. Ky;
which oscillated between + 0.3 MPa,/m was not plotted in order to avoid
cluttering of Figure 7. The decreasing stress intensity factor as well as
the fluctuations in Sox (and KII) along the post branching curved cracks
are noted. Crack No. 2 arrested at KI = 0.4 MPa/m. This arrest stress
intensity factor is close to arrest stress intensity factor for

Homalite-100 determined by Dally [29].
12




DISCUSSIONS

Table 1 shows that at the onset of branching, the instantaneous dyna-
mic stress intensity factor reached an average maximum of 2.04 MPa/m irre-
spective of specimen thickness and loading condition and the initial crack
geometry. This branching stress intensity factor, KIb' is approximately
4.85 times the fracture toughness and is in agreement with that of Dally
[29]). Figures 2 and 3 show that while the K; hovers about K, crack
branching will not occur prior to the precipitous drop in r_ . At the onset

0

of branching, the characteristic r_ value reaches its average minimum,

o
re s 1.3 mm for this material. These results show that KIb is a necessary
condition for crack branching. The sufficiency condition involves the
characteristic distance ro» which is a function of the crack velocity, KI

and Oox® The ratio of KI values prior to and after crack branching is an

X
average of 2.2. Although this value is consistent with the postulate that
crack branching occurs to dissipate fracture energy along two propagating
cracks, it is higher than the expected v2 value.

It is also interesting to note that KII = 0 prior to crack branching

increases a small amount immediately after crack branching consistent with

the postulated directional stability model [23]. Irrespective of the crack

geometry and specimen thickness, crack branched when it reached KI = KIb
and o = oo regardless of crack traveling length.

Of a total of 31 dynamic fracture tests involving WL-RDCB, 14 cracks
curved and 6 branched at initiation. These results imply that crack
branching in WL-RDCB specimens is observed only in few cases and is attri-
buted to the fact that the crack propagates in a decreasing KI field, a
situation which does not promote crack branching beyond the initiation of

crack extension.

13




The crack branching angles of Kobayashi (8], Kalthoff [21] and
Christie [22] all converged to about 25-28 degrees. This agreement is not
surprising since the loading conditions and the specimen geometries are
quite similar in all three cases and resulted in negative o value which

ox
reduces the fracture angle.

CONCLUSTONS

1. A necessary and sufficient condition for dynamic crack branching is a
crack branching stress intensity factor, Klb' accompanied by minimum
characteristic distance o = Tc*

2. The crack instability model based on the above successfully predicted
crack branching angles in Homalite-100 SEN and WL-RDCB specimens.
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KII and Cox of Arrested Branch

Cracks in Figure 4

(a) Inner Branch Crack

14th Frame
KII 0.4 MPav/m
o 0.32 MPa
ox

(b) Outer Branch Crack

15th Frame
KII 0.44 MPa/m
% ox 0.08 MPa

15th Frame
0.44 MPa/m
‘0. 04 MPa

16th Frame
0.41 MPaym
0.18 MPa




Table 3
SUMMARY OF CRACK BRANCHING ANGLE DISTRIBUTION IN A WEDGE LOADED RECTANGULAR
DOUBLE CANTILEVER BEAM SPECIMEN

Test No. Specimen Thickness Dia. of Blunt Notch Measured Calculated 1st

h o Branch Angle Branch Angle
mm mm 1st Branching

8¢ 6c
L&B-120573 9.5 2.2 52 52
L10B-052473 9.5 2.2 52 52
L148 9.5 5.0 55 52
L198-013074 9.5 4.0 54 52
L278-022474 9.5 2.4 54 52
Average B3.4 52
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